Geometry

Name:

\qquad
Pythagorean Theorem

NOTES:

Pythagorean Theorem is used to find missing \qquad of \qquad triangles.

Sides a and b are called the \qquad
Side c is the \qquad (always opposite the right angle)

For any right triangle: \qquad
Find the value of x for the following. Round answers to the nearest tenth.

5. A 31ft support wire is attached from the top of a $25 f t$ telephone pole to a point on the ground. How far from the base of the pole does the wire meet the ground?

Converse of the Pythagorean Theorem:

- If $c^{2}=a^{2}+b^{2}$, the triangle is \qquad .
- If $c^{2}>a^{2}+b^{2}$, the triangle is \qquad -.
- If $c^{2}<a^{2}+b^{2}$, the triangle is \qquad -.

A triangle is formed if the \qquad of the two \qquad sides is \qquad than the largest side.

Determine if the $\mathbf{3}$ sides can form a triangle, then classify the triangle as acute, right, or obtuse.

1$) 3,7,9$	2) $8,15,23$	$3117,17,22$

\qquad
Pythagorean Theorem

HOMEWORK ASSIGNMENT

Find the value of x, round to the nearest tenth if necessary.

7) A 35 ft wire is secured from the top of a flagpole to a stake in the ground. If the stake is 14 ft from the base of the flagpole, how tall is the flagpole?

Given the side lengths, determine if they form a triangle. Then, classify the triangle as acute, right, or obtuse.

8$) 15,16,21$	$9) 20,23,41$	10) 10, 24, 26
		$12,24,29,32$
11$) 6,13,20$	$12) 3,16,17$	

